Distributed Hybrid Genetic Programming for Learning Boolean Functions

نویسندگان

  • Stefan Droste
  • Dominic Heutelbeck
  • Ingo Wegener
چکیده

When genetic programming (GP) is used to find programs with Boolean inputs and outputs, ordered binary decision diagrams (OBDDs) are often used successfully. In all known OBDD-based GP-systems the variable ordering, a crucial factor for the size of OBDDs, is preset to an optimal ordering of the known test function. Certainly this cannot be done in practical applications, where the function to learn and hence its optimal variable ordering are unknown. Here, the first GP-system is presented that evolves the variable ordering of the OBDDs and the OBDDs itself by using a distributed hybrid approach. For the experiments presented the unavoidable size increase compared to the optimal variable ordering is quite small. Hence, this approach is a big step towards learning well-generalizing Boolean functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Distributed Hybrid Genetic Programming for Learning Boolean Functions

When genetic programming (GP) is used to find programs with Boolean inputs and outputs, ordered binary decision diagrams (OBDDs) are often used successfully. In all known OBDD-based GP-systems the variable ordering, a crucial factor for the size of OBDDs, is preset to an optimal ordering of the known test function. Certainly this cannot be done in practical applications, where the function to l...

متن کامل

A Fast and Self-Repairing Genetic Programming Designer for Logic Circuits

Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...

متن کامل

An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic Programming approach

A new form of Genetic Programming (GP) called Cartesian Genetic Programming (CGP) is proposed in which programs are represented by linear integer chromosomes in the form of connections and functionalities of a rectangular array of primitive functions. The effectiveness of this approach is investigated for boolean even-parity functions (3,4,5), and the 2-bit multiplier. The minimum number of eva...

متن کامل

Approximating Boolean Functions by OBDDs

In learning theory and genetic programming, OBDDs are used to represent approximations of Boolean functions. This motivates the investigation of the OBDD complexity of approximating Boolean functions with respect to given distributions on the inputs. We present a new type of reduction for one–round communication problems that is suitable for approximations. Using this new type of reduction, we ...

متن کامل

Relational Databases Query Optimization using Hybrid Evolutionary Algorithm

Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000